Algebraic Geometry Lecture 16 - Geometry of Surfaces

Mike Harvey

Recap (Divisors).

A prime divisor of a variety X is an irreducible, closed subvariety of codimension one. A divisor is a finite formal sum of prime divisors:

$$
D=\sum_{\text {Prime divisors } P} n_{P} P, \quad n_{P} \in \mathbb{Z}
$$

Let $f \in k(X)$ be a rational function, then

$$
\operatorname{Div}(f)=\sum_{\text {Prime divisors } P} \operatorname{ord}_{P}(f) P
$$

where

$$
\operatorname{ord}_{P}(f)=\left\{\begin{array}{l}
d \text { if } f \text { has a zero of order } d \text { on } P \\
-d \text { if } f \text { has a pole of order } d \text { on } P \\
0 \text { otherwise }
\end{array}\right.
$$

A principal divisor is a divisor D such that $D=\operatorname{Div}(f)$ for some $f \in k(X)$.
A canonical divisor of X is

$$
D=\operatorname{Div}(\omega)=\sum_{\text {Prime divisors } P} \operatorname{ord}_{P}(\omega) P
$$

for a differential ω, where $^{\operatorname{ord}_{P}}(\omega)=\operatorname{ord}_{P}(f)$ when $\omega=f d t_{1} \wedge \ldots \wedge d t_{n}$.
Two divisors are called linearly equivalent if their difference is a principal divisor:

$$
D \sim D^{\prime} \quad \Leftrightarrow \quad D-D^{\prime}=\operatorname{Div}(f) \text { for some } f \in k(X)
$$

We define

$$
\operatorname{Pic}(X)=\operatorname{Cl}(X)=\frac{\operatorname{Div}(X)}{\operatorname{PDiv}(X)}
$$

where

$$
\begin{aligned}
& \operatorname{Div}(X)=\text { Group of divisors } \\
& \operatorname{PDiv}(X)=\text { Group of principal divisors. }
\end{aligned}
$$

Surfaces.

Proposition 1. Let $X \subset \mathbb{P}^{3}$ be a surface, then any two plane sections (intersections of planes with $X)$ are linearly equivalent, this gives the"hyperplane class" H in $\operatorname{Pic}(X)$.

Proof. The hyperplane sections will be of the form

$$
\begin{aligned}
& D_{1}=X \cap\left\{\ell_{1}=0\right\} \\
& D_{2}=X \cap\left\{\ell_{2}=0\right\}
\end{aligned}
$$

for linear equations ℓ_{1}, ℓ_{2}. Then

$$
D_{1}-D_{2}=\operatorname{Div}\left(\frac{\ell_{1}}{\ell_{2}}\right)
$$

Intersection Numbers.

Let D, D^{\prime} be two prime divisors on a surface X that intersect transversely:

$$
X \quad \text { rather than } \quad \supset
$$

Then we define the intersection number of D and D^{\prime} to be

$$
D \cdot D^{\prime}:=\#\left\{D \cap D^{\prime}\right\}
$$

Properties

- Respects linear equivalence: if C, D, D^{\prime} are divisors and $D \sim D^{\prime}$ then

$$
D . C=D^{\prime} . C
$$

- Symmetric: if C, D are divisors then

$$
D . C=C . D
$$

- Bilinear: If C, D_{1}, D_{2} are divisors then

$$
\left(D_{1}+D_{2}\right) \cdot C=D_{1} \cdot C+D_{2} \cdot C .
$$

"Example" We denote $D . D$ by D^{2}, but what is D^{2} ? Find a divisor $D^{\prime} \sim D$ such that $D^{\prime} \neq D$, then we define $D^{2}=D^{\prime} . D$.

Example Let $X=\mathbb{P}^{2}$, so $\operatorname{Pic}(X) \cong \mathbb{Z}$. Let h be a generator of $\operatorname{Pic}(X)$, so h is a "line-class". Any two lines are linearly equivalent and two distinct lines meet in one point, so $h^{2}=1$. Now let C, D be curves of degree m, n respectively. So

$$
C \sim m h \quad D \sim n h
$$

We then have

$$
\begin{aligned}
C \cdot D & =m h \cdot n h \\
& =(m n) h^{2} \\
& =m n .
\end{aligned}
$$

Example Let X be a non-singular quadric surface in \mathbb{P}^{3}, then $\operatorname{Pic}(X) \cong \mathbb{Z} \oplus \mathbb{Z}$. Let ℓ be a generating line corresponding to $(1,0)$ and m be a generating line corresponding to $(0,1)$. Then $\ell^{2}=m^{2}=0$ and $\ell . m=1$ since any two lines in the same family are skew and two lines from opposite families meet in a point ${ }^{1}$. Now let C be a curve of type (a, b) and C^{\prime} be a curve of type $\left(a^{\prime}, b^{\prime}\right)$. So

$$
C \sim a \ell+b m \quad C^{\prime} \sim a^{\prime} \ell+b^{\prime} m
$$

Then

$$
\begin{aligned}
C . C^{\prime} & =(a \ell+b m) \cdot\left(a^{\prime} \ell+b^{\prime} m\right) \\
& =a a^{\prime} \ell^{2}+b b^{\prime} m^{2}+\left(a b^{\prime}+b a^{\prime}\right) \ell \cdot m \\
& =a b^{\prime}+b a^{\prime} .
\end{aligned}
$$

Adjunction Formula.

Set:

$$
\begin{aligned}
& C \text { - a smooth curve on a surface } X \\
& K \text { - canonical divisor of } X \\
& g \text { - genus of } C
\end{aligned}
$$

then the adjunction formula is

$$
2 g-2=C \cdot(C+K)
$$

Example Let C be a degree d curve in \mathbb{P}^{2}. Exercise: Show that $\operatorname{deg} K_{\mathbb{P}^{2}}=-3$. So $\operatorname{deg} C=d$, $\operatorname{deg}(C+K)=d-3$, and by the adjunction formula

$$
2 g-2=d(d-3)
$$

so the genus of C is

$$
g=\frac{1}{2}(d-1)(d-2)
$$

[^0]
[^0]: ${ }^{1}$ See Hartshorne p. 361 .

