Algebraic Geometry Lecture 16 – Geometry of Surfaces

Mike Harvey

Recap (Divisors).

A prime divisor of a variety X is an irreducible, closed subvariety of codimension one. A divisor is a finite formal sum of prime divisors:

$$D = \sum_{\text{Prime divisors } P} n_P P, \qquad n_P \in \mathbb{Z}.$$

Let $f \in k(X)$ be a rational function, then

$$\operatorname{Div}(f) = \sum_{\text{Prime divisors } P} \operatorname{ord}_P(f)P$$

where

$$\operatorname{ord}_{P}(f) = \begin{cases} d \text{ if } f \text{ has a zero of order } d \text{ on } P, \\ -d \text{ if } f \text{ has a pole of order } d \text{ on } P, \\ 0 \text{ otherwise.} \end{cases}$$

A principal divisor is a divisor D such that D = Div(f) for some $f \in k(X)$.

A canonical divisor of X is

$$D = \operatorname{Div}(\omega) = \sum_{\text{Prime divisors } P} \operatorname{ord}_P(\omega) P$$

for a differential ω , where $\operatorname{ord}_P(\omega) = \operatorname{ord}_P(f)$ when $\omega = f dt_1 \wedge \ldots \wedge dt_n$.

Two divisors are called *linearly equivalent* if their difference is a principal divisor:

$$D \sim D' \quad \Leftrightarrow \quad D - D' = \operatorname{Div}(f) \text{ for some } f \in k(X).$$

We define

$$\operatorname{Pic}(X) = \operatorname{Cl}(X) = \frac{\operatorname{Div}(X)}{\operatorname{PDiv}(X)}$$

where

Div(X) = Group of divisorsPDiv(X) = Group of principal divisors.

Surfaces.

Proposition 1. Let $X \subset \mathbb{P}^3$ be a surface, then any two plane sections (intersections of planes with X) are linearly equivalent, this gives the "hyperplane class" H in $\operatorname{Pic}(X)$.

Proof. The hyperplane sections will be of the form

$$D_1 = X \cap \{\ell_1 = 0\} D_2 = X \cap \{\ell_2 = 0\}$$

for linear equations ℓ_1, ℓ_2 . Then

$$D_1 - D_2 = \operatorname{Div}\left(\frac{\ell_1}{\ell_2}\right).$$

Intersection Numbers.

Let D, D' be two prime divisors on a surface X that intersect transversely:

 \times

rather than
$$\Box$$

Then we define the intersection number of D and D' to be

$$D.D' := \#\{D \cap D'\}.$$

Properties

• Respects linear equivalence: if C, D, D' are divisors and $D \sim D'$ then

$$D.C = D'.C;$$

• Symmetric: if C, D are divisors then

$$D.C = C.D;$$

• Bilinear: If C, D_1, D_2 are divisors then

$$(D_1 + D_2).C = D_1.C + D_2.C.$$

"Example" We denote D.D by D^2 , but what is D^2 ? Find a divisor $D' \sim D$ such that $D' \neq D$, then we define $D^2 = D'.D$.

Example Let $X = \mathbb{P}^2$, so $\operatorname{Pic}(X) \cong \mathbb{Z}$. Let *h* be a generator of $\operatorname{Pic}(X)$, so *h* is a "line-class". Any two lines are linearly equivalent and two distinct lines meet in one point, so $h^2 = 1$. Now let *C*, *D* be curves of degree *m*, *n* respectively. So

$$C \sim mh$$
 $D \sim nh$.

We then have

$$C.D = mh.nh$$
$$= (mn)h^2$$
$$= mn.$$

Example Let X be a non-singular quadric surface in \mathbb{P}^3 , then $\operatorname{Pic}(X) \cong \mathbb{Z} \oplus \mathbb{Z}$. Let ℓ be a generating line corresponding to (1,0) and m be a generating line corresponding to (0,1). Then $\ell^2 = m^2 = 0$ and $\ell m = 1$ since any two lines in the same family are skew and two lines from opposite families meet in a point¹. Now let C be a curve of type (a, b) and C' be a curve of type (a', b'). So

$$C \sim a\ell + bm$$
 $C' \sim a'\ell + b'm.$

Then

$$C.C' = (a\ell + bm).(a'\ell + b'm) = aa'\ell^2 + bb'm^2 + (ab' + ba')\ell.m = ab' + ba'.$$

Adjunction Formula.

Set:

$$C$$
 - a smooth curve on a surface X

- K canonical divisor of X
- g genus of C,

then the adjunction formula is

$$2g - 2 = C.(C + K).$$

Example Let C be a degree d curve in \mathbb{P}^2 . Exercise: Show that deg $K_{\mathbb{P}^2} = -3$. So deg C = d, deg(C + K) = d - 3, and by the adjunction formula

$$2g - 2 = d(d - 3)$$

 $g = \frac{1}{2}(d-1)(d-2).$

so the genus of C is

¹See Hartshorne p.361.